skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Valdes, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A long-term record of global mean surface temperature (GMST) provides critical insight into the dynamical limits of Earth’s climate and the complex feedbacks between temperature and the broader Earth system. Here, we present PhanDA, a reconstruction of GMST over the past 485 million years, generated by statistically integrating proxy data with climate model simulations. PhanDA exhibits a large range of GMST, spanning 11° to 36°C. Partitioning the reconstruction into climate states indicates that more time was spent in warmer rather than colder climates and reveals consistent latitudinal temperature gradients within each state. There is a strong correlation between atmospheric carbon dioxide (CO2) concentrations and GMST, identifying CO2as the dominant control on variations in Phanerozoic global climate and suggesting an apparent Earth system sensitivity of ~8°C. 
    more » « less
  2. Mace, Ruth (Ed.)
    Abstract Previous work has proposed various mechanisms by which the environment may affect the emergence of linguistic features. For example, dry air may cause careful control of pitch to be more effortful, and so affect the emergence of linguistic distinctions that rely on pitch such as lexical tone or vowel inventories. Criticisms of these proposals point out that there are both historical and geographic confounds that need to be controlled for. We take a causal inference approach to this problem to design the most detailed test of the theory to date. We analyse languages from the Bantu language family, using a prior geographic–phylogenetic tree of relationships to establish where and when languages were spoken. This is combined with estimates of humidity for those times and places, taken from historical climate models. We then estimate the strength of causal relationships in a causal path model, controlling for various influences of inheritance and borrowing. We find no evidence to support the previous claims that humidity affects the emergence of lexical tone. This study shows how using causal inference approaches lets us test complex causal claims about the cultural evolution of language. 
    more » « less
  3. ABSTRACT Although the frequency of ancient hybridization across the Tree of Life is greater than previously thought, little work has been devoted to uncovering the extent, timeline, and geographic and ecological context of ancient hybridization. Using an expansive new dataset of nuclear and chloroplast DNA sequences, we conducted a multifaceted phylogenomic investigation to identify ancient reticulation in the early evolution of oaks (Quercus). We document extensive nuclear gene tree and cytonuclear discordance among major lineages ofQuercusand relatives in Quercoideae. Our analyses recovered clear signatures of gene flow against a backdrop of rampant incomplete lineage sorting, with gene flow most prevalent among major lineages ofQuercusand relatives in Quercoideae during their initial radiation, dated to the Early‐Middle Eocene. Ancestral reconstructions including fossils suggest ancestors ofCastanea + Castanopsis,Lithocarpus, and the Old World oak clade probably co‐occurred in North America and Eurasia, while the ancestors ofChrysolepis, Notholithocarpus, and the New World oak clade co‐occurred in North America, offering ample opportunity for hybridization in each region. Our study shows that hybridization—perhaps in the form of ancient syngameons like those seen today—has been a common and important process throughout the evolutionary history of oaks and their relatives. Concomitantly, this study provides a methodological framework for detecting ancient hybridization in other groups. 
    more » « less
  4. Recent research has shown the potential of speleothem δ13C to record a range of environmental processes. Here, we report on 230Th-dated stalagmite δ13C records for southwest Sulawesi, Indonesia, over the last 40,000 yr to investigate the relationship between tropical vegetation productivity and atmospheric methane concentrations. We demonstrate that the Sulawesi stalagmite δ13C record is driven by changes in vegetation productivity and soil respiration and explore the link between soil respiration and tropical methane emissions using HadCM3 and the Sheffield Dynamic Global Vegetation Model. The model indicates that changes in soil respiration are primarily driven by changes in temperature and CO2, in line with our interpretation of stalagmite δ13C. In turn, modelled methane emissions are driven by soil respiration, providing a mechanism that links methane to stalagmite δ13C. This relationship is particularly strong during the last glaciation, indicating a key role for the tropics in controlling atmospheric methane when emissions from high-latitude boreal wetlands were suppressed. With further investigation, the link between δ13C in stalagmites and tropical methane could provide a low-latitude proxy complementary to polar ice core records to improve our understanding of the glacial–interglacial methane budget. 
    more » « less
  5. Abstract. Paleoclimatic records provide valuable information about Holocene climate, revealing aspects of climate variability for a multitude of sites around the world. However, such data also possess limitations. Proxy networks are spatially uneven, seasonally biased, uncertain in time, and present a variety of challenges when used in concert to illustrate the complex variations of past climate. Paleoclimatic data assimilation provides one approach to reconstructing past climate that can account for the diversenature of proxy records while maintaining the physics-based covariancestructures simulated by climate models. Here, we use paleoclimate dataassimilation to create a spatially complete reconstruction of temperatureover the past 12 000 years using proxy data from the Temperature 12k database and output from transient climate model simulations. Following the last glacial period, the reconstruction shows Holocene temperatures warming to a peak near 6400 years ago followed by a slow cooling toward the present day, supporting a mid-Holocene which is at least as warm as the preindustrial. Sensitivity tests show that if proxies have an overlooked summer bias, some apparent mid-Holocene warmth could actually represent summer trends rather than annual mean trends. Regardless, the potential effects of proxy seasonal biases are insufficient to align the reconstructed global mean temperature with the warming trends seen in transient model simulations. 
    more » « less
  6. Abstract Substantial changes in terrestrial hydroclimate during the Holocene are recorded in geological archives and simulated by computer models. To identify spatial and temporal patterns during the past 12 ka, proxy records sensitive to changing precipitation and effective moisture (precipitation minus evaporation) were compiled from across the globe (n = 813). Proxy composite timeseries were computed for 30 of the IPCC AR6 regions and compared to two full‐Holocene transient model simulations (TraCE‐21ka and HadCM3) and twelve mid‐Holocene CMIP6 simulations. We find that throughout Northern Hemisphere monsoon regions, proxy and model simulations indicate wetter‐than‐modern conditions during the early and mid‐Holocene while Southern Hemisphere monsoon regions were drier. This insolation driven trend toward modern values began approximately 6,000 years ago, and the clear agreement among proxy records and models may reflect the large magnitude of precipitation change and consistent atmospheric circulation forcing mechanism for these regions. In the midlatitudes, the pattern of change is less certain. Generally, proxy composites show a wetting trend throughout the Holocene for the northern midlatitudes, possibly due to strengthening westerlies from an increasing latitudinal temperature gradient. However, simulations indicate that the magnitude of change was relatively low, and for portions of North America, there is a proxy‐model disagreement. At high latitudes, hydroclimate is positively correlated with temperature in both proxies and models, consistent with projected wetting as temperatures rise. Overall, this large proxy database reveals a coherent pattern of hydroclimate variability despite the challenges associated with reconstructing hydroclimate fields. 
    more » « less
  7. Abstract North Pacific atmospheric and oceanic circulations are key missing pieces in our understanding of the reorganization of the global climate system since the Last Glacial Maximum. Here, using a basin‐wide compilation of planktic foraminiferal δ18O, we show that the North Pacific subpolar gyre extended ~3° further south during the Last Glacial Maximum, consistent with sea surface temperature and productivity proxy data. Climate models indicate that the expansion of the subpolar gyre was associated with a substantial gyre strengthening, and that these gyre circulation changes were driven by a southward shift of the midlatitude westerlies and increased wind stress from the polar easterlies. Using single‐forcing model runs, we show that these atmospheric circulation changes are a nonlinear response to ice sheet topography/albedo and CO2. Our reconstruction indicates that the gyre boundary (and thus westerly winds) began to migrate northward at ~16.5 ka, driving changes in ocean heat transport, biogeochemistry, and North American hydroclimate. 
    more » « less